Z:SPEC

JP500

A Portable and Robust Analyzer Quantify Heavy Metals in Food

Optimized for Pb, As, Hg, Cu, Zn, and Se

Powered by Monochromatic X-Ray Fluorescence (MXRF) technology, JP500 can rapidly and precisely quantify heavy-metal elements in food. Its excellent performance meets the challenge of reliably measuring extremely low-level Pb, As, and Hg, at the 0.1 ppm level for As and Pb requested by FDA regulations. Testing more samples in a shorter period with accurate, reliable analysis, JP500 is a powerful tool for risk assessments of heavy-metal contamination in food and it enables producers and customers to monitor and reduce the health risks from heavy-metal exposure.

Features

- 1. Ultra-high signal-to-background ratio and ultra-low detection limit;
- 2. Portable design: light-weight, and comfortable to carry;
- 3. Minimum sample preparation enables on-site sampling and quantification.

MXRF Innovative Technology

JP500 is powered by Monochromatic X-ray Fluorescence (MXRF) technology: an elemental-analysis technique offering significantly enhanced detection performance over traditional Energy-Dispersive X-ray Fluorescence (EDXRF) technology. This technique applies state-of-the-art monochromating and focusing optics, enabling dramatically higher signal-to-background ratio compared to traditional polychromatic X-ray Fluorescence. Figure 1 shows the basic configuration of MXRF and its use of focused monochromatic excitation.

▲ Accuracy

Excellent linearity of measurement and standard values was used to verify the accuracy of the instrument, as shown below.

Standard Value (ppm)

Table 1 shows the results of repeated measurements on different standard samples to verify the stability and the accuracy.

Table 1: Repeatability Test (ppm)												
Element	Cu		Ni		As		Pb		Se		Hg	
Sample	NIST1567 Wheat	BD151 Milk powder	Veg oil	NMIJ7502 Rice	Veg oil	NMIJ7502 Rice	NIST1577 Liver	BD151 Milk powder	NIST1570 Spinach	NIST1568 Rice	NIST1570 Spinach	BD151 Milk powder
1	2.27	4.88	0.115	0.406	0.075	0.110	0.072	0.197	0.117	0.356	0.049	0.474
2	2.28	4.87	0.111	0.408	0.086	0.115	0.049	0.181	0.113	0.359	0.032	0.512
3	2.26	4.90	0.093	0.416	0.076	0.118	0.064	0.215	0.107	0.358	0.036	0.480
4	2.29	4.84	0.102	0.418	0.080	0.114	0.063	0.207	0.106	0.352	0.036	0.473
5	2.27	4.84	0.112	0.418	0.086	0.110	0.048	0.230	0.111	0.358	0.046	0.483
6	2.24	4.86	0.110	0.407	0.082	0.099	0.078	0.213	0.110	0.353	0.029	0.486
7	2.28	4.85	0.102	0.398	0.075	0.115	0.059	0.214	0.121	0.348	0.030	0.496
Average	2.27	4.86	0.106	0.410	0.080	0.111	0.062	0.208	0.112	0.355	0.037	0.486
Standard	2.03	5.00	0.100	0.390	0.100	0.109	0.062	0.207	0.110	0.365	0.030	0.520
SD	0.016	0.022	0.008	0.007	0.005	0.006	0.011	0.015	0.005	0.004	0.008	0.014
RSD (%)	0.7	0.5	7.2	1.8	5.9	5.4	17.9	7.3	4.7	1.1	21.1	2.9

Realistic Sample Analysis

Table 2 shows the results for heavy metal analysis using JP500 for different kinds of food on the market, proving its capability of quantifying trace heavy metals in food.

	Table 2: Element Test in Food Sample (ppm)									
Sample			1	W.C.T.E.			9			
	Cereal	Orzo pasta	Dark Chocolate	Wine	Fresh tuna	Fresh spinach	Lolli pop			
Cr	1.85	12.21	ND	0.203	0.142	2.18	0.200			
Mn	25.24	10.84	7.58	1.61	0.085	2.30	ND			
Fe	187.3	64.76	27.85	3.25	3.29	36.55	2.28			
Ni	1.38	1.92	2.39	ND	0.211	0.532	0.108			
Cu	2.51	3.53	8.09	0.134	1.39	1.25	0.181			
Zn	18.90	14.36	16.69	1.41	4.29	12.91	0.134			
As	0.015	0.022	0.031	0.018	0.613	0.017	ND			
Se	0.127	0.559	0.050	ND	0.917	0.016	ND			
Hg	ND	ND	ND	ND	0.362	ND	ND			
Pb	0.042	0.070	ND	ND	0.087	0.137	ND			

Table 3: JP500 – Limit of Detection (ppm) Application: Trace Heavy Metals in Food												
Element	As	Hg	Pb	Cr	Cu	Ni	Zn	Mn	Co	Se	TI	Bi
Scan mode (100s)	0.035	0.035	0.07	0.25	0.06	0.07	0.06	0.25	0.07	0.02	0.035	0.07
Quantitative mode (600s)	0.015	0.015	0.03	0.10	0.025	0.03	0.025	0.10	0.03	0.009	0.015	0.015

The following figure shows the detection sensitivity of JP500 to different elements.

JP500 Specifications								
Measuring time	30 - 1200 s							
Element range	40 elements between AI - U							
Data storage and output	Printout, Ethernet, USB, internal storage, U disk							
I/O port	Ethernet 10/100, USB							
Power	110-240 VAC ± 10%, 50-60 Hz (Hertz) Built-in battery 98 Wh (optional)							
Working temperature & humidity	+41°F - 104°F (5°C - 40°C), 30 - 85 %							
Weight	9 kg							
Dimensions	30 cm W x 23 cm L x 26 cm H							

Z-Spec is a fast-growing manufacturer of X-ray analyzers founded by the inventor of the MXRF technique who formerly served as the chief scientist and advanced director of R&D for XOS. Through a strategic partnership with XOS, Z-Spec offers accurate, efficient, and reliable elemental analysis solutions optimized for environmental protection and public safety, like soil, water, food, and agriculture products.

